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The paper deals with the problem of the explosion at a point in an ideal 
gas. The properties of the gas are close to one whose isentropic exponent 
y = 7. The unknown functions are written in the form of power series in 
time, and the terms of the series are determined up to an arbitrary order. 

1. Sedov [ X 1 h as shown that the problem of a strong explosion in an 
ideal gas whose isentropic exponent y = 7 possesses a simple, exact solu- 
tion. The solution can be written 

Here p1 denotes the density of the gas at rest ahead of the shock 
front, E denotes a 
explosion, so that 

quantity proportional to the total energy E, of the 
the radius of the spherical shock is 

‘Ihe corresponding linearized problem (when the linearization is per- 
formed around the solution Cl.11 ) has been studied in f 2-4 f under a 
number of additional assmnptions. 

We shall base our solution on the fo~u~ation of the problem given in 
L 4 3 and will assume that the explosion occurs at a point in a gas whose 
internal energy is described by the relation 

E(Ps P) = F [& + il& (j&f--] 

( Rd-, P== ;t, O<n=--:_<l) 
(l-2) 



736 N.N. Ko tchina 

Here pO and p,, denote certain constants whose dimensions, 
of density and pressure, respectively. ‘Ihe symbols D, denote 

constants, 1 is an integer, and the series is convergent. It 

are those 

arbitrary 
follows 

from the argument in Ll,4 1 that the equation of state of the gas under 

consideration can have a more general form than Clapeyron’s equation. 

Equation (1.2) imposes a limitation only on the isentropic equation which 
must have the form characteristic of an ideal gas with an exponent y = 7. 
The temperature and entropy have the forms 

T=cD(Y) [$+ $h(l-nk)Y-q, s=s&$& (Y = $) 

and Q ( Y ) is an arbitrary function. 

We shall seek a solution of the above problem in the form [ 2,4 1 

u = &+ F(h, T), p = $pI~E-~rt-~G (h, T), p = -&-pIi E irt 
12 - -- -- 
6H(A, 7) 

(1.3) 
2 2 3 -- 

h=p,&+rt 6, 
-- -- %I 

T = (/I& 5 p. 6 )W (i-4) 

Assuming that the functions !‘(A, r ), G(h, r 1, and H(h, 7 ) can be ex- 
panded in series in powers of r, we write 

li’ (A, 7) = 1 + ; fk @) rk, G(L T) = 1 + i gk (h) gk 
k=l 

H (A, T) = 1 + ; hk (h) Tk 

k=l 
(1.5) 

k=l 

Substituting (1.3)-(1.5) into the equation of motion, we obtain the 
following nonhomogeneous system of linear differential equations (Euler’s 

equations) for the functions fk(X), g,(X), and hk(A): 

(1.6) 

-33h fk + 3hhk’ + (12nk - 8) fk - 9 gk + 9 hk+ Fk(‘) = 0 

h fk’- 3hgk’ +4 fk + 12nkgk + FkG’) =: 0 

where 

21hgk’- 3hhk’ - 4 fk -- 84nkgk + 12nkhk+ Fkc3) = 0 

k-1 k-t-1 

Fk(‘) = 2 {[(I2 ni - 8) fi - shfi’] gk-i $- (fi -b hfi’) [fk-i + 2 fjgk-i-j]} 
i=l j=l 

k-1 

Fk(‘) = x {(bfi $- hfi’) gk--i $ hfi&?k_i) (1.7) 
i=T. 
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k-l 

Fk(3) = 2 {%+[7hg'k_i -/- hn(8i - 7k)gk_i]- a);hi’gk_i + fk_i [hhi’- 4hi - 
i=l 

k-i-1 

- %‘i - ki 1 + f i 2 [ gj (hh’k-i-j - 4hk_i-j) - 7~gj’hk_i-j I> 
j=l 

It is easy to verify that the right-hand sides of Equations (l.6), 

qw are of the form 

F,Wh = _$ PCLk(i)hYPk (p&), rPk = con&) (1.8) 
LA=4 

.&.suning that the constants Bpk and y,& are known, and making use of 

Equations (1.8), we can find the solution of the system of Equations 

(1.6) 

fk(A) = -3 5 ckci) 
i=2 

gk CA) = (14 
i=l w=4 Ir=l 

b(A) = i okci)ckti) hai (nk) + oi: fjpk(3)hywk _ -$ epk(3)hYlrk 

i=l L1=4 !J=l 

fkre ckti’ are constants of integration 

al(z) = 42, a!&3 (x) = 
- (122 + 17) f If7 (482”+40r + 7) 

4 

Prr (1) = 1, UkW = 
3 

p,(i) 5 
4 + ai (nk) 

G1 (nk) + 3 ’ 4nk - ai (nk) 

ak(i) = 
24 + 7a; (nk) 

4nk - ai (nk) 
(i = 2, 3), owkci) = & (5 p,(j)&tji)) (r > 4) 

Pk j=l 

- 37,, + 12nk - 8 -3 rpk + 3 

Dwk=9 rflk + 4 - rpk+ 4nk 0 
I 

7 (r,k - 4nk) 
(1.10) 

-4 - TV, + 4nk 

~~~~ ii) are the adjoints of the determinantDFk. 

The relations in (1.7) and (1.8) show that the solution of the problem 

of a point-explosion by the method of successive approximations reduces 
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itself to the determination of the constants Bkhci) and y,&. Hence, the 

constants ckci' can be determined for the boundary conditions which cor- 

respond to the numerous individual problems mentioned before [2-4 I. 

2. We note that for the first approximation (k = 11, Equations (1.6) 

represent a homogeneous system, so that in Fquations (1.8) it is neces- 

sary to put [2,4 1 

ppp = 0 - (E” = 1, 2, 3) (2-l) 

It is easy to verify that the functions F&"'(h), f&h), g&(x) and 

h&(X) can be assumed to be of the form 

k--l k-1 

Fk(‘) (h) = 2 Fkp(*) (h), fk 0.) = 2 fk?.’ @‘I 
p=1 p=o (2.2) 
k-1 k-1 

gk @) = 2 gkp o+ hk (1) = 2 hkp (‘h) 
p=o p=o 

The functions f&o&), g&,,(x), h&,,(X) and F,,"'(A) can be written 

down at once for arbitrary values of k from Equations (1.71, assuming 
that in the relations (l.9) all ePkti) P 0 (cl > 41, i.e. taking into 

account only the solution of the homogeneous system (1.6). Hence, making 

use of Equations (1.8)-(1.101, where p ranges over the interval from 1 

to W&l, we write down the expressions fkl(h), gklb), hkl(h), and, 
making use of these functions, we write down Fk 2(z) etc. It is seen from 

the formulas in (1.7) that this process will come to an end with p = k -L 

We shall assume that the following relations are valid: 

fip = 2 e,phYP$ gip = 2 fl~f(w~~ , hip = 2 ~~p)hYI*i (2.3) 
& P LL 

Here, the sumnation extends over p = 1+ up ( 1) ( i) 
, . . . . “p + 1 t ami 

(i << k- 1) G+, (i) = 0, til(') = 3; the quantities yFi, ePirr' are known. 

Substitutin equations analogous to (2.3) into the relations for the 

fUnCtiOnS Fkp ( Q )(A), we shall obtain for every function Fkp(*) a closed 

expression in terms of known quantities. 

We now enumerate the indices and the corresponding coefficients which 

enter into the expressions for the functions Fkp('). 

It is possible to verify that the functions F,,"' are given by 
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Here the sumnation extends over p = 1 + e+,(k’p “p+ 1 
(k) . ..) , ad the 

numbers o + 1 (k) _ o (k) as well as the constants yPLjP $k ( ‘) for these 

values o P cc will be Pdetenined. 

Making use of Equations (1.8)-(1. lo), we write the corresponding ex- 
pressions for the functions f,,(x), g,,(x), hkp(X) 

fk* = 2 epphYpk, gkp = 2 f&k(2)hY”k, /?.kp= 2 f&@)hYpk 
P Ir w 

Here the sunnation over ~1 is analogous to (2.4). 

(2.5) 

In this manner it is possible to determine (at once for all k’s) the 
corresponding parts of the solution consecutively for p = 0, 1, . . . , 

- 1. Hence, for every p, we have found the solution f,(A 1, gp(h), 
i,w. 

We note that the same method can be used to write down the solution 
which corresponds to a more general form for internal energy (A,(R) de- 
note arbitrary functions). 

a (P, p) 7 s [& + 5 pl-“k& (R)] 
k=l 

(2.6) 

We shall refrain from writing down the corresponding expressions for 
temperature and entropy owing to the complexity of their expressions; for 
the case hk = 0 (k > 1) in Equation (2.61, the corresponding expressions 
can be found in [ 4 1 . 

3. We now determine the constants C,’ i). In order to satisfy the con- 
dition at the center of syrnnetry (particle velocity equal to zero) [ 2,4 ] , 
it is necessary to put Cki3) = 0. 
radius of the shock wave in tenns 
form of a power series in r 

1 

( > 
a s rg- 

We can determine the constants 
di tions 

The expression for the dimensionless 
of time can be assumed to be in the 

2 

'iT=l +s AkTk 

k===l 

(3.1) 

A,, Ckcl) and Ckt2) from the shock con- 

P2 = Pl + PlC2(1 - ;) 

(3.2) 

+ ; i, & { ($$)r-nk - { j& [Pi + s (1 - E-> ,2]}1-nx } = 0 
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It turns out that these constants are determined by a system of linear 

equations, the right-hand sides of which contain the parameters of the 

problem as well as the constants Aq, C (l), C (*), where q < k, which 

have already been determined from the !olutioz of the preceding system. 

4. We now determine the behavior of the solution (1.9) in the 

neighborhood of the center of symnetry. Assuming that in a certain inter- 

val 0 < R dR*we have 

Ak(J'+&j-+--nk) 

yOkk 
and retaining in the expressions (1.9) only the leading terms fW h 

okk 
(i = 1, 2, 3), we can write down the following solution of (1.5): 

(4.1) 

Here 

k=l k=l 

and the constants 6::: have the form (a, = a;(n)) 

k-1 

P 
(1) 
okk = 2 .I 

i=l 

Otii [ 12~~i-I33iUz--8]0~~_~k_i f 

k-i--l 

(4.2) 

(4.3) 

k-i-l 

The Formulas (1.3), (l.4), (4.1)-(4.3) determine the asymptotic be- 

havior of the solution. This solution is identical with the solution 

given in [2,4 1 for the form applicable near the center of symnetry and 

based on the linearized formulation of the problem of a point-explosion. 

This shows that the reasoning in [4 I concerning the behavior of the 

characteristics of the motion near the center of symmetry in terms of the 

magnitude of the parameter n and of the sign of the constant Cl(*) is 
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correct. Furthermore, the conclusion concerning the emergence of a second 
shock wave for Dk = 0 (k = 0, 1, 2) for a series of values of II and C,,(‘) 
and its propagation from the center of synrnetry behind the first shock is 
also correct. 

The diagram represents the field of integral curves for the equation 

dz 
d7 = 

22 (7 (12n - 4a2 + azF) [3azF (F- 10) - lQ (F - 1) (12n -4az + a$)]} 
(12 n - 4az + azF) {-7F (P - 10) (12n - 4aZ + azF) + 9 [7azF - 4 (az + 3n)] z} 

+ 

6azza [9 (12n - 4az + azF) - 2az (F - I)] 
+ (12n - 4az + a,F) {-7F (F - 10) (12n - 4az + azF) + 9 [7azF - 4 (a% + 3n)] z} (4.4) 

(2 = 7 G/H). lh e solution near the center of explosion [2,4 1 for the 
case 0.66978 < n < 1 can be reduced to the qualitative investigation and 
to the integration of the preceding equation. 

When C,‘2’ < 0, the solution of the problem under consideration is 
continuous, the integral curve which gives the solution of the problem 
emerges from point B(F = 1,. z = 7, x = 0) which corresponds to the 
appropriate self-similar case, and enters point A(F = 10, z = 0, n = 00) 
which corresponds to the center of symmetry. When CL(‘) > 0, the integral 
curve which leaves point B reaches point B, which turns out to be a focal 
point. Point B, lies on the parabola 

2 = & (12n - 4cc, + a,F)2 (4.5) 

on which the parameter x reaches an extremal value. Consequently, on 
approaching point B,, the integral curve intersects the parabola (4.5) in 
an infinite number of points and a continuous solution of the problem 
proves to be impossible. If in Equation (2.6), in the neighborhood of 
R = 0, it is possible to put Ah(R) = 0 for all k’s, then a solution with 
a shock wave can be obtained (the state in the gas ahead of the shock wave 
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is described in the diagram by point M, which lies on the dotted curve 
entering point B,; the state behind the shock wave is represented by 

point M, which lies on the curve entering point E for which z = m and 
x=L-a). 

In the interval 0 < n < 1 under consideration it is possible to 
obtain analogous results for other values of n. ‘Ihe second shock wave is 
obtained as a consequence of the fact that the integral curve of interest 
to us passes through a singular point which lies on the parabola, (4.51, 

and that the latter is a focal point. 

5. Sedov demonstrated that the solution of any problem of self-similar 
motion of a perfect gas can be reduced to the qualitative investigation 

of an ordinary differential Equation (2.1), [ 11, p. 171 and to the 
detenination of the relevant integral curve; when the values of v and y 

are fixed, the equation depends on tm parameters 6 and K. 

There exist examples of self-similar problems, and of problems which 

can be reduced to se1 f-similar problems in which a second shock wave does 

appear. 

The coordinates V of the singular points of Equation (2.1) [ 1 1 , which 
are obtained at the points of intersection of the curve along which the 

integral curves are horizontal with the curve along which the integral 
curves are vertical, satisfy a given cubic equation. It is possible to 
show that the latter can be decomposed into a quadratic and a linear 

equation 

(v-1)1,‘~+t1-x-v~]V+X8=0, [2+v(~-l)]V-220 (5.1) 

In the case of two-dimensional symnetry, the foregoing cubic equation, 
as seen from Equations (5.11, reduces to a quadratic. 

We write down the coordinates of the respective points 

v,= 2 2v (7 - 1) (2 - [2 + ” (7 - I)1 61 
2+u[7-1]’ z1 = {--2u + X [2 + u (7 - I)]} [a + u (7 - I)]” (5.2) 

v,,, = l 
2 (Y - 1) 

[x +d- 1 Tj&” + 2[(2-v)6-- 11” + (VS- I)“] 

2*,3=[{X2+2[(2-Y)~-l]X+[~~-2v+2]P-28$l}~ (5.3) 

f[X+(2-V)L1]1/“2+2[(2-v)~-l]~_1(Y~-l)~]~~ (v=2,3) 

When v = 2 or v = 3, the singular points (V2, z,) and (V3, z3) are 



Motion of certain ideal garcs 743 

real if the parameters 6 and K satisfy the inequality 

x2 -f- 2[(2-v)6-- 11% -t(vs-- 1)2$x0 

If S > 1, the inequality is always satisfied; if 6 < 1, it is satis- 
fied when 

and when 

It is easy to verify directly that the singular points (V2, z,) and 

(V,, t,) lie on the parabola I = (V = 6 )*, on which the parameter 
X = r/bt’ attains an extremal value. 

The singular point (V,, zr) lies above the parabola z = (V - 6)’ when 
the following conditions are satisfied 

$)a> 2 2v i7 + 1 - FJ I2 5 @ (7 Ull - 2u 

2-krt7--1)’ [2+v(7-~))(2-~[[2+v(7-~)]} <x <2+~(7---1) 

2)8< 2 
- 

2v ” (7 - + 1 6 - I2 6 + v (7 
- 

2+vt7--1)’ 12 + (7 I)1 (2 I2 + v 1111 - (7 VI} 

We shall examine the first case in more detail. It is possible to 
show that the following inequalities are satisfied: V, < V3 < V!; in 
addition, if 6 < 1, K > 0, all integral curves, with the exception of 
one, have at point (Vz, z,) a smaller, and at point (V,, z3) a larger 
slope with respect to the V-axis than the parabola z = (V - S12 does at 
the same point. Consequently, the direction of motion along the integral 
curyes towards increasing h’s is such that if at the first instant of 
time, the velocity, the density and the pressure are described by certain 
step-functions, then,, when a cylindrical or spherical piston moves out- 
wards (r* = A* bt’), there will appear a second shock wave in a certain 
interval of A*, and the second shock wave will follow the first one. 

Equation (4.4) represents a special case of bation (2.1) in I 11 , 
when 

l%e special result of the problem of a point-explosion considered in 

Sections l-4 consists in the fact that a second shock wave has been 
found in an example when tfle motion is not self-similar; it is self- 
similar only in the neiglborhood of the center of symnetry. 
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